Light and metabolic signals control the selective degradation of sucrose synthase in maize leaves during deetiolation.
نویسندگان
چکیده
The content and activity of Suc (Suc) synthase (SUS) protein is high in sink organs but low in source organs. In this report, we examined light and metabolic signals regulating SUS protein degradation in maize (Zea mays) leaves during deetiolation. We found that SUS protein accumulated in etiolated leaves of the dark-grown seedlings but was rapidly degraded upon exposure to white, blue, or red light. This occurred concurrent with the accumulation of photosynthetic enzymes, such as Rubisco and Rubisco activase, and enzymes of Suc biosynthesis such as Suc-phosphate synthase. Deetiolation-induced SUS degradation was not inhibited by the proteasome inhibitor MG132. Moreover, neither full-length nor truncated SUS phosphorylated at the serine-170 site was found in the crude 26S proteasome fraction (150,000g postmicrosomal pellet) isolated in the presence of MG132. However, SUS degradation was strongly inhibited by feeding cycloheximide or amino acids to detached leaves, while Suc feeding had no effect. Of the amino acids tested, exogenous glutamate had the greatest effect. Collectively, these results demonstrate that SUS protein degradation during deetiolation: (1) is selective; (2) can be triggered by either blue- or red light-mediated signaling pathways; (3) does not involve the 26S proteasome; and (4) is inhibited by free amino acids. These findings suggest that SUS degradation is important to supply residues for the synthesis of other proteins required for autotrophic metabolism.
منابع مشابه
Role and Regulation of Sucrose-phosphate Synthase in Higher Plants.
Sucrose-phosphate synthase (SPS; E.C. 2.4.1.14) is the plant enzyme thought to play a major role in sucrose biosynthesis. In photosynthetic and nonphotosynthetic tissues, SPS is regulated by metabolites and by reversible protein phosphorylation. In leaves, phosphorylation modulates SPS activity in response to light/dark signals and end-product accumulation. SPS is phosphorylated on multiple ser...
متن کاملKetose reductase activity in developing maize endosperm.
Ketose reductase (NAD-dependent polyol dehydrogenase EC 1.1.1.14) activity, which catalyzes the NADH-dependent reduction of fructose to sorbitol (d-glucitol), was detected in developing maize (Zea mays L.) endosperm, purified 104-fold from this tissue, and partially characterized. Product analysis by high performance liquid chromatography confirmed that the enzyme-catalyzed reaction was freely ...
متن کاملCompanion-Cell Specific Localization of Sucrose Synthase in Zones of Phloem Loading and Unloading.
An immunohistochemical approach was used in maize (Zea mays) and citrus (Citrus paradisi) to address the previously noted association between sucrose synthase and vascular bundles and to determine the localization of the low but detectable levels of sucrose synthase that remain in leaves after the import-export transition. Sucrose synthase protein was immunolocalized at the light microscope lev...
متن کاملSucrose Phosphate Synthase Expression at the Cell and Tissue Level Is Coordinated with Sucrose Sink-to-Source Transitions in Maize Leaf.
Immunohistological analyses for sucrose phosphate synthase (SPS) show that the protein is localized in both bundle-sheath cells (BS) and mesophyll cells (M) in maize (Zea mays) leaves. In young leaves, SPS protein was predominantly in the BS, whereas mature leaves showed nearly equal levels of signal in both BS and M. A cell-type-specific response was also seen in light and dark treatments. Dar...
متن کاملPhytochrome mediated regulation of sucrose phosphate synthase activity in maize.
The extractable activity of sucrose phosphate synthase was determined in etiolated seedlings of maize (Zea mays L.), soybean (Glycine max [L.] Merr.), and sugar beet (Beta vulgaris L.) following treatments of changing light quality. A 30-minute illumination of 30 microeinsteins per square meter per second white light produced a three-fold increase in sucrose phosphate synthase activity at 2 hou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 144 1 شماره
صفحات -
تاریخ انتشار 2007